+3-I-S-NEP-Major-I-P-1-Sc-Phy

2024

Time : As in Programme

Full Marks: 100

The figures in the right-hand margin indicate marks.

Answer all questions.

PART-I

	Ans	wer the following Questions. 1x10
	a. ,	The trace of $y=3x^2$ is symmetrical about axis.
	b.	The second term of Taylor series expansion for the function $(1-x)^2$ is
	c.	Write the unit vector perpendicular to $(\hat{i} + \hat{j})$ lies in same plane.
	d.	For any scaler function ϕ , the value of curl grad ϕ is
	er	NVXE+h×70+(ha)×V pot or of
	e.	The Dirac delta function $\delta(-x) = $
	f.	The function $\tan x$ is not continuous at $x = $
	g.	Does the function $f(x)$ which is continuous at x_0 will be necessarily differentiable at x_0 ? (yes/no/can not say)
	h.	The value of $\iint_{c} \vec{r} \cdot d\vec{r}$ is
Н	Y-223	(Turn Over)
•		

- i. In spherical polar co-ordinate system $\hat{r} \times \hat{\theta} =$ ____.
 - j. Does the vector triple product is associative ? (yes/no/can not say)

PART-II

2. Answer the following questions.

2x9

- a. Solve $\frac{dy}{dx} = 2x 7$ where y(2) = 0.
- b. Trace the curve $y = x \sin x$.
- c. If \vec{a} is a constant vector then show that $\vec{\nabla} \cdot (\vec{a} \times \vec{r}) = 0$.
- d. If $x = r \cos \theta$, and $y = r \sin \theta$ then evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$.
- e. Prove that $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$.
- f. Show that $\vec{a} \neq \vec{c}$ although $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c}$.
- g. Evaluate the directional derivative of the function $\phi = x^2 y^2 + 2z^2$ from P(1,2,3) to Q(2,3,4).
- h. Prove that $\vec{\nabla} \times (\phi \vec{A}) = \phi \vec{\nabla} \times \vec{A} + \vec{A} \times \vec{\nabla} \phi$.
- i. For position vector \vec{r} show that $\vec{\nabla}r^n = nr^{n-1}\hat{r}$.

PART-III

3. Answer any eight questions of the followings.

5x8

- a. Solve the differential equation $(1+x^2)dy (1+y^2)dx = 0$.
- b. Using complementary function and particular Integral solve $y'' + 4y = 2 \sin 2x$.

(2)

(Contd.)

PHY-223(4)

- c. Verify the linear independence of the functions $e^{ax}sinbx$ and $e^{ax}cosbx$.
- d. State and prove Green's theorem.

e. Prove that
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{F}) = \vec{\nabla} \cdot (\vec{\nabla} \vec{F}) - \nabla^2 \vec{F}$$
.

- f. Explain the existance and Uniqueness theorem.
- g. Obtain the acceleration expression in circular cylindrical co-ordinate system.
- h. Evaluate $\iint_R (x^2 + y^2) dx dy$ where R is the region in 1st quadrant of XY plane with side 2 and one vertex at origin as a squire.

i. Prove that
$$\int_{-\infty}^{\infty} \delta(x-a)\delta(x-b)dx = \delta(a-b).$$

j. Show that scalar product of two vectors remains invariant under rotations.

PART-IV

Answer any four of the following questions.

8x4

- 4. What are Lagrange's multipliers? Using them show that "The Maximum volume of solid inscribed in a sphere is a cube."
- 5. Establish the physical significance of scalar triple product. Obtain the total surface area and volume of a parallelepiped whose edges are $(\hat{i}+2\hat{j}+3\hat{k})$, $(3\hat{i}+4\hat{j}-\hat{k})$ and $(\hat{i}+2\hat{j}+\hat{k})$.
- 6. State and prove Gauss divergence theorem. Using it obtain the volume of a sphere having radius r.

- 7. Derive the expression for Laplacian (∇^2) in spherical polar co-ordinate system.
- 8. Solve the differential equation $(x^2 + y^2)dx 2xydy = 0$ and obtain Dirac delta function as the limitation of Gaussian function.

have that $\int \delta(x-a)\delta(x-b)dx = \delta(a-b)$

Show that scalar product of two vectors remains inverting

car any four of the rollowing questions.

Establish the physical significance of scalar triple product.

but (A=(A+ik) (D:+(C+i)) our same work

State and prove Gauss divergence theorem Using it obtain

the volume of a spirer having radius